
3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We've chose an Agile project management approach to maximize flexibility and adaptability as we work
towards achieving our goal of achieving a throughput of <5ms (200 fps). This methodology allows us to
continually reassess our implementations and decisions, ensuring we stay aligned with evolving project
requirements.

To facilitate seamless collaboration among team members, we've leveraged platforms like GitHub and
Trello. GitHub serves as our primary repository, where our client also has access, enabling them to track our
progress in real-time. The source codes and documentation are primary uploaded to our GitHub repository.
Meanwhile, Trello enables us to organize tasks, issues, and milestones, ensuring every team member
remains on track and focused on key deliverables.

By adopting Agile methodologies and utilizing these collaborative tools, we're not only ensuring
transparency and accountability within our team but also fostering a dynamic environment where
innovation and iteration thrive.

3.2 TASK DECOMPOSITION

Design and Implementation

 We aim to achieve a throughput of <5ms (200 fps). The diagram shown above is a simplified version of our
program design. Our ideal plan is to retrieve each frame from the SD card that our client gave us as input to
our multithreading program. The first frame will be fed into Thread 1 and Thread 2. Both threads are
making different inferences. The second frame will be fed into Thread 3. The second frame will also feed
into Thread 2 once it finishes inferring the first frame. Eventually, three threads will run concurrently. The
idea of using three threads is because the Kria KV260 FPGA board has four DDR4 memory. Each of the
DDR4 memory is 1 GB in size. Each thread will be assigned one DDR4 memory. The last one, DDR4
memory, will be assigned to the CPU.

In Thread 1, the input frame will first be pre-processed using the image semantic segmentation technique to
remove any reflection or imperfection in the frame and output to eye tracking inference code. Then, the eye
tracking inference code will infer the pre-processed frame by utilizing DPU and output frame with the pupil
coordinate (x-axis and y-axis). The output pupil coordinate frame will then stake with the output frame
with the result according to the frame number. The final output will be stored in an array according to the
frame number.

In Thread 2, the input frame will first be pre-processed by cropping the region of interest to reduce data
size and output to blink detection inference code. Then, the blink detection inference code will infer the
pre-processed frame by utilizing DPU and output frame with the result (blink or no blink).

In Thread 3, the input frame will first be pre-processed using the image semantic segmentation technique
to remove any reflection or imperfection in the frame and output to eye tracking inference code. Then, the
eye tracking inference code will infer the pre-processed frame by utilizing DPU and output the pupil
coordinate (x-axis and y-axis). The output pupil coordinate frame will then stake with the output frame
with the result according to the frame number. The final output will be stored in an array according to the
frame number.

Components

Pre-processing

• This component will be the first component in every thread.

• It will pre-process all the input frames for other inference codes to speed up the process of
inferring.

• This component uses semantic segmentation to remove reflection and imperfection in the content
of the frame to ensure the result is accurate.

Eye-Tracking

• This component will be used in two threads as the inferring duration is longer than blink detection.

• This component will utilize the DPU to speed up the inferring process.

Blink Detection

• This component will only be used in one thread as the inferring process is faster than eye-tracking
due to minimum data need to be inferred.

• This component will utilize the DPU to speed up the inferring process.

Deep Learning Processing Unit (DPU)

• The DPU model is DPUCZDX8G_ISA1_B4096.

• It is a machine learning accelerator in FPGA.

• It is a specialized hardware accelerator designed specifically for deep learning tasks, aiming to
improve performance and efficiency compared to traditional CPUs or GPUs.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Key Milestones Evaluation Criteria

1. Understand previous team’s code. Fully understand previous team’s code.

2. Combine image pre-processing, blink detection
algorithm, eye-tracking algorithm, into one
program (serially).

Fully implement and test each algorithm for
accuracy.

3. Implement parallelism into program. Achieve throughput of <5ms (200 fps).

4. Implement semantic segmentation for image
pre-processing and retrain model.

Achieve model accuracy of top-5 95% (while
maintaining <5ms throughput).

5. Implement eye tracking algorithm with the pre-
processed image

Achieve the accuracy of output from 86% to 92%.

6. Implement blink detection algorithm (new) with
the pre-processed image

Achieve the accuracy of output 99%.

7. Run three threads concurrently by initializing
each thread to a memory

Successfully run three threads concurrently
without fighting for memory.

3.4 PROJECT TIMELINE/SCHEDULE

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risk Probability Mitigation Strategies

Not being able to complete project in time 10% • Regularly review and adjust
project timelines during sprint
retrospectives.

• Implement a robust risk
management plan to identify
potential delays early on.

• Break down project tasks into
smaller, manageable chunks to
track progress more effectively.

• Allocate additional resources or
adjust team priorities as needed
to meet deadlines.

Combining multiple algorithms into one
program can increase the complexity of the
software

20% • Conduct thorough code reviews
to ensure clarity, efficiency, and
maintainability of the integrated
algorithms.

• Implement modular design
principles to encapsulate
individual algorithms, making
the codebase more manageable.

• Utilize comprehensive testing
methodologies to validate the
integration of algorithms and
identify any potential conflicts or
performance bottlenecks.

Implement parallelism into program could
lead to synchronization overhead

30% • Employ effective parallel
programming paradigms such as

task-based parallelism or data
parallelism to minimize
synchronization overhead.

• Utilize synchronization
primitives like locks,
semaphores, or atomic
operations judiciously to avoid
contention and bottlenecks.

• Profile and optimize critical
sections of code to reduce
serialization and maximize
parallel execution.

Image semantic segmentation could take
longer time

10% • Continuously optimize the
machine learning algorithms
used for semantic segmentation
to improve inference speed
without compromising accuracy.
Techniques such as model
pruning, quantization, and
architecture optimization can be
explored.

• Apply data augmentation
techniques and preprocessing
steps to the input images to
reduce computational
complexity without sacrificing
model performance. Techniques
like image resizing, cropping,
and normalization can
streamline inference.

• Investigate model compression
techniques such as knowledge
distillation or weight pruning to
reduce the computational
requirements of the
segmentation model while
preserving its accuracy. This can
lead to faster inference times on
resource-constrained hardware.

3.6 PERSONNEL EFFORT REQUIREMENTS

Team
member

Task Subtask Description Estimated
hours

Jonathan
Tan

DPU
Management,
main function

Implement
DPU sharing

Because there is only one DPU on board and
multiple algorithms share the resource,
proper DPU sharing mechanism need to be
implemented.

10

Coordinate
dataflow

Coordinate the input and output
requirements of different algorithms

5

Testing Testing and debugging. 30

Josh
Czarniak

Eye tracking
algorithm

Modify
previous
team’s eye
tracking code

Previous team’s eye tracking code relies the
RPU, we need to remove that portion of the
code and ensure that it still runs.

10

Manage
memory and
limit to 1GB
per thread

Due to the limited DDR memory on board,
each eye tracking thread is only allowed 1GB
of memory.

10

Testing Testing and debugging. 30

Justin
Wenzel

Blink
detection
algorithm

Write the
blink
algorithm

Using the blink detection model, write the
program that implements the blink detection
model.

10

Manage
memory and
limit to 1GB
per thread

Due to the limited DDR memory on board,
each eye tracking thread is only allowed 1GB
of memory.

10

Testing Testing and debugging. 30

Kai Heng
Gan

OpenCV
image
preprocessing

Implement
image
semantic
segmentation
machine
learning
algorithm

Using semantic segmentation ML algorithm
could remove the glare in the image and
increasing the accuracy of the output.

10

Write a
program for
image pre-
processing

This program will take the input fed by the
main function and process the image by
running the model trained from the semantic
segmentation ML algorithm and output the
result for other algorithms to infer.

10

Testing Testing and debugging the program to avoid
errors occurred in the main function.

30

Santiago
Campove
rde

Profiling Recompile
Petalinux to
include VART
profiling tools

In order to use VART’s profiling tools, we will
need to recompile the operating system
(Petalinux) to include the tools.

20

Create script
to analyse
generated csv
data.

Because we will run many tests, a script is to
be created to analyse multiple tests at once

5

3.7 OTHER RESOURCE REQUIREMENTS

Hardware Resources -

• Xilinx Kria Evaluation Board – For development and exectuing program, utlizing built in DPU
for model inferences.

• ETG Provided Development Computer – Provides a native Linux OS for the team to develop and
test programs, including installation of other Xilinx development tools. Allows team to SSH into
board from remote locations.

Software Resources -

• TensorFlow – An open-source machine learning library developed by Google, allowing developers
to easily build and deploy machine learning models/applications.

• Docker – An opern-source platform creating an environment that easily allows developers to
develop, share, and run applications, by packages everything needed to run the software within a
unti called a container.

• Xiling Vitis – A software platform that assists in the development and launch of embedded
software on Xilinx’s different hardwares, including FPGAs in this project.

• OpenCV – An open-source computer vision and machine learning library. Used for many different
cases but assits the project through image preprocessing.

• Python – A favored language of choice for its vast support and libraries to assist in machine
learning and development.

• C/C++ - Used within the embedded system for implementing low level functionality and
interfacing of the and between different hardware components.

Collaborative Tools/Documentations

• Version Control System – Using Git with the platform GitHub for code sharing among group
members.

• Project Management – Using Trello for task management, and progress checks for group
members.

• Microsoft Teams/Telegram - Enables collborative communication channels group and client
communication.

• Technical Documentation – Utilizing different technical documents to further understanding of
hardware and software tools (DPU, TensorFlow, Docker, OpenCV, etc.).

• Group Documentation – Utilizing specific documentation created by previous groups during
development and testing, to assits with previous project understanding and provided code base.

